Monadic predicate logic (with identity) is decidable (Boolos, Burgess, and Jeffrey 2007, Ch. 21. The result goes back to Löwenheim-Skolem 1915).
This website lets you check whether a formula is a theorem. If it's not a theorem, you will be shown a counter-example.
@x!y(x=y)
@x(Ax > (Ax*Bx))
!x(Ax*Bx) > @x(Ax+Bx)You can add logical symbols by clicking the buttons above, or by using this correspondence:
| Logical symbol | Keyboard character |
|---|---|
| → | > |
| ∀ | @ |
| ∃ | ! |
| ¬ | - |
| ∧ | * |
| ∨ | + |
formula with added parentheses: (@x((Ax)>((Ax)*(Bx))))
Tree representation of your formula:
∀
├── x
└── →
├── A
│ └── x
└── ∧
├── A
│ └── x
└── B
└── x
Theoremhood: false
Counter-example:
c0:
B: false
A: true